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The properties of convective flow driven by an adverse temperature gradient 
in a fluid-filled porous medium are investigated. The Galerkin technique is used 
to treat the steady-state two-dimensional problem for Rayleigh numbers as 
large as ten times the critical value. The flow is found to look very much like 
ordinary BBnard convection, but the Nusselt number depends much more 
strongly on the Rayleigh number than in BBnard convection. The stability of 
the finite amplitude two-dimensional solutions is treated. At a given value of 
the Rayleigh number, stable two-dimensional flow is possible for a finite band 
of horizontal wavenumbers as long as the Rayleigh number is small enough. For 
Rayleigh numbers larger than about 380, however, no two-dimensional solu- 
tions are stable. Comparisons with previous theoretical and experimental work 
are given. 

1. Introduction 
An understanding of the basic properties of convection in a layer of fluid 

heated from below is important both from a theoretical and an applied view- 
point. Convective instability is a widespread phenomenon, numerous examples 
having been noted in geophysical and engineering situations. From a theoretical 
point of view, convection driven by an adverse temperature gradient is one of 
the simplest types of hydrodynamic instability, and considerable progress has 
been made in its study. In  particular, since the linear stability problem can be 
treated rather easily, convective instability has been the subject of many treat- 
ments of post-instability flow. 

Convection in a porous medium has received less attention than has ordinary 
BBnard convection. Several experimental studies have been carried out (Schneider 
1963; Elder 1967; Combarnous & LeFur 1969; Buretta 1972), but only recently 
have theoretical analyses of finite amplitude convection in a, porous medium 
been performed (Elder 1967; Palm, Weber I% Kvernvold 1972). The present 
study is motivated by two factors. First, a more complete knowledge of the 
properties of convection in a porous medium requires that calculations be 
carried out a t  Rayleigh numbers larger than those treated by Palm et al. These 
larger Rayleigh numbers are prevalent in naturally occurring convection in 
porous media, and comparison with experiment requires such calculations. In  
addition, the equations of motion describing convection in porous media are 
of lower order than those describing BBnard convection. Therefore, the so-called 
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‘free’ boundary conditions are the natural ones in a porous medium. Realistic 
calculations can thus be carried out rather easily for this type of convection. The 
fact that simpler equations are involved here than in BBnard convection has 
been used to great advantage by Busse & Joseph (1972) in an application of the 
upper-bounding technique to this problem. The present analysis involves a solu- 
tion of the equations of motion themselves; a comparison of the results with 
those obtained using the upper-bounding approach is of interest in an assess- 
ment of the applicability of results of the upper-bounding technique, 

The criterion for the onset of convective flow in a porous medium was pre- 
dicted theoretically by Lapwood (1948). For Rayleigh numbers above a critical 
value, laminar flow occurs; Palm et al. (1972) have noted that, for Rayleigh 
numbers somewhat above the critical Rayleigh number, the flow is two- 
dimensional. The heat flux across a layer of porous material in which convection 
is occurring has been measured by Combarnous & LeFur (1969); they found that 
the Nusselt number, the ratio of the actual heat transport to that which would 
occur in the absence of convection, increases continuously as a function of 
Rayleigh number up to a value of the Rayleigh number approximately seven 
times the critical one; a t  this point a change in the slope of the heat-transport 
curve occurs. This behaviour is similar to that noted by Malkus (1954) to occur 
in BBnard convection. As shown by Busse (1967), this phenomenon is thought 
to be due to the instability of the boundary layers which form at super- 
critical Rayleigh numbers and is associated with a transition to a regime in 
which no stable two-dimensional convective flow is possible (Busse & White- 
head 1971). If the analogy between BBnard convection and convection in a 
porous medium holds, the transition noted by Combarnous & LeFur (1969) 
should correspond to the transition to a regime in which only three-dimensional 
flow is possible. 

The present analysis is divided into two parts. First, the equations describing 
steady convection in a porous medium are developed, and the two-dimensional 
problem is solved numerically using the Galerkin technique for Rayleigh numbers 
up to ten times the critical value. Properties of this steady flow are discussed, 
particularly those associated with the heat flux and its variation with wave- 
number. The second part deals with the stability of the two-dimensional solu- 
tions to infinitesimal perturbations. Two distinct types of perturbations are 
treated, and separate analyses are given for each. 

2. Formulation of the problem 
Consider a horizontally infinite layer of porous material saturated with fluid. 

The layer has horizontal boundaries at z = 0 and d on which the temperature T 
is specified: 

T(O) = To, T(d)  = T,+AT. 

The equations of motion admit the motionless basic state 

TI = To + ( ATld) Z. 



Large amplitude convection in porous media 53 

The stability of this state will be examined. The non-dimensional Boussinesq 
equations of motion governing an arbitrary perturbation are 

B(au/at+u.Vu) = -Vp+RO%-u, (1) 

(2) 

v.u  = 0. (3) 

aept + u . ve = v2e + w, 

Here u is the perturbation velocity, p is the perturbation pressure, 8 is the 
temperature perturbation ( T - T I ) ,  2 is the vertical unit vector and w = u.2. 
The velocity u is an average over the microscale of the porous medium. These 
macroscopic equations are valid as long as the pore size of the medium is smaller 
than any scale size of the flow. At very large Rayleigh numbers, the applicability 
of these equations may break down because of the formation of boundary layers 
near the top and bottom boundaries. Non-dimensionalization has been accom- 
plished by using d as the length scale, d 2 / K  as the time scale, AT as the temperature 
scale and K / d  as the velocity scale. The two parameters R and B are, respectively, 
the Rayleigh number and a Prandtl number: 

R = ygKdAT/VK, B = h ' K / d 2 V ,  

where y is the thermal expansion coefficient, g is the acceleration due to gravity, 
K is the permeability of the porous medium, v is the kinematic viscosity of the 
fluid, and K is a thermal diffusivity defined as the thermal conductivity of the 
porous medium divided by the specific heat and density of the fluid (Katto & 
Masuoka 1967). Note that the equations are almost identical to those of BBnard 
convection; the replacement of V2u by -U allows only two conditions to be 
imposed on the boundaries. These will be taken to be 

w = e = O  a t  z = O , l .  (4) 
This corresponds to boundaries on which the temperature is fixed and through 
which no flow occurs. Now, for most situations of interest, B < 1; we shall 
therefore carry out the analysis in the limit B + 0. This is particularly appro- 
priate in that Darcy's law, the equation of motion for flow in a porous medium, 
has no inertial term in it. As Muskat (1937) has pointed out, the absence of the 
inertial term is due to the comparative unimportance of the acceleration forces 
as compared with the internal friction resistances in a fluid-bearing medium. 
In  our notation, this situation is explicitly taken into account through the use 
of the limit B -+ 0. 

In  order to develop the equations to be solved, we shall introduce new notation. 
Since both the vertical component of vorticity and the divergence of the velocity 
vanish, we may write 

u = S$, where S = (a,,,a,, -Vq), V: = (a,,+a,,). 
The equations of motion may then be written as 

- R0 = V2$, 

a q a t  + s$. ve = v2e - vz,$, 

subject to the boundary conditions V:$ = 19 = 0 at  z = 0 , l .  
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The linear stability problem is given by 

Re = - 0 2 4 ,  v v  = v:+ + aolat. 
The principle of exchange of stabilities can be shown to hold, and the condition 
for the onset of instability can be written as 

R > R, = (a2 + n2)2/a2, 

where we have assumed that 0 and g5 are of the form 

4 = fc.3 Y) 41(4, 8 = *I@@, Y) el(4, 
where V: f = - a2f and 4, and 8, satisfy the prescribed boundary conditions on 
z = 0,  1. R, takes on the minimum value 4n2 when a = 7r. 

3. The finite amplitude steady solutions 
In  this section we shall solve the two-dimensional steady problem using the 

Galerkin technique, first used in the study of thermal convection by Veronis 
(1966). 

Assuming that 8 and 4 are periodic in the horizontal, expand 8 in a Fourier 
series satisfying the boundary conditions: 

13 = s a,” eihax sin vnx, 

where -00 < h < 00, 1 < v < 00 and a,, = a?,,”. A similar expansion for 4 may 

A, v 

be written down: R ah” eiAax sin vnz 
= nf;y  (ha)2+(vn)2 ’ (7) 

where (5) has been used. We then substitute these expressions into (6), multiply 
by e-ipaxsinynz and integrate over the layer. We obtain an infinite set of coupled 
first-order ordinary differential equations for the ahv. It is necessary to truncate 
these series solutions to obtain a finite set of equations. This is accomplished 
by restricting h and v such that 1 A1 + v < N ,  where N is a positive integer. This 
method of truncation has been discussed in detail by Veronis (1966). Values of 
N as large as 16 were used in the present study. The particular method for solving 
the equations and the convergence criterion used are described by Straus (1972). 
In  short, the convergence was measured by the convergence of the Nusselt 
number 

as a function of N .  It was found that N = 16 was sufficient to compute accurately 
the properties of convection for Rayleigh numbers as large as 400. The values of 
the Nusselt number should be accurate to within 1 yo. 

The calculations were carried out in the following manner. For a given value 
of R, the Fourier coefficients ahY are functions of N as well as of the horizontal 
wavenumber a. For example, if the series is truncated a t  N = 2 ,  we may derive 
the following expression for N u :  

(8) 
2 
R NU = 3 - - ( ~ ~ ~ + n ~ ) ~ / a ~ .  
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u y  NU ( N  = 2) N u  ( N  = 8 )  N u  ( N  = 10) 

1.25 2.600 3.874 3.888 
1.50 2.589 3.926 3.928 
1.75 2.574 3.948 3-950 
2-0 2.556 3.969 3,981 
2.5 2.517 3-993 4.010 
3.0 2-474 4-001 4.026 
3.5 2.430 4.003 4.028 
4.0 2-384 3.986 4.022 
5.0 2.290 3.906 3-932 

TABLE 1.  NU as a function of N and u for R = 200. 

1 .o 
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FIGURE I. The horizontally averaged temperature fields for finite amplitude convection in 
a porous medium. (a) R = 60, a = 7r. (b )  R = 400, a = 2-9.rr. 

This is the same expression as may be derived using perturbation expansion 
methods such as that used by Palm et al. (1972) .  However, it  is only accurate for 
R 5 2Rc. Both the Nusselt number and the wavenumber a needed to maximize 
it are given accurately at larger values of R only by the results of computations 
at Iarger values of N. An example of this is given in table 1. The values of Nu 
given by the N = 2 calculation are clearly too low; in addition, the wavenumber 
required to maximize Nu is larger than the value a = 7c predicted by the N = 2 
result, although the Nusselt number varies only weakly with a. 

As is well known in studies of BBnard convection, as the Rayleigh number is 
increased above R,, boundary layers begin to form a t  the top and bottom 
boundaries. This allows the interior of the fluid to approach isothermality, 
while the heat flux across the boundaries is increased owing to the large 
temperature gradient there. This boundary layering also occurs in convection in 
porous media. Figure I shows the horizontally averaged temperature field as 
a function of x .  The situations for two values of the Rayleigh number are shown: 
R = 60 with 01 = 7c and R = 400 with a = 2.97c. It is clear that the boundary 
layers become much stronger as R increases. In  fact, for large values of R the 
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FIGURE 2. The Nusselt number as a function of Rayleigh number : the heavy curve repre- 
sents results of the present analysis ; the shaded area indicates the range of experimental 
measurements by Schneider (1963), Elder (1967), Combarnous & LeFur (1969) and Buretta 
(1972). 

boundary-layer thickness is thought to become comparable with the pore size, 
and the applicability of the equations of motion as formulated here probably 
breaks down. Another effect should be pointed out here. The wavenumbers for 
which figure 1 was drawn are approximately those which maximize the heat 
flux at the given values of R. A wavenumber considerably different from that 
which maximizes the heat flux leads to a horizontally averaged temperature 
profile which shows much less boundary-layer structure. This behaviour is in 
agreement with the fact that a large convective heat flux is associated with 
strong boundary layers. 

In  figure 2 is shown the variation of Nusselt number with Rayleigh number 
as calculated in this analysis. The Nusselt number is the maximum value which 
occurs, as a function of wavenumber, a t  each value of R. Also shown is the range 
of experimental results as given by the investigators mentioned earlier. For 
large Rayleigh numbers, the present numerical results appear to lie in the lower 



Large amplitude convection in porous media 57 

part of the range of experimental values. Since there is quite a bit of scatter in 
the experimental measurements, and since each measurement has perhaps a 10 % 
uncertainty, this fact is not thought to be of significance. 

4. Stability of the finite amplitude solutions 
In  this section the stability of the finite amplitude two-dimensional solutions 

described earlier will be discussed. The equations governing arbitrary three- 
dimensional infinitesimal perturbations & and $ may be written as 

Bl9 = - v2$, 

a&pt = - 64.08- 6 4 .  vo + v20- v;$, 
( 9) 

(10) 

where $ and & must satisfy the same boundary conditions a t  z = 0, 1 as do $ 
and 6. We are interested in determining whether there exist solutions 6 and 6 
which, a t  given values of R and a, grow in time. Specifically, if aO/at is positive 
for any 6, the steady two-dimensional solution is unstable; if not, it  is stable. 

As Busse (1967) has pointed out for the case of B6nard convection, since the 
stability equations (9) and (10) are linear differential equations with constant 
coefficients with respect to time and they co-ordinate, the solution can be written 
as the sum of solutions which depend exponentially on the three spatial co- 
ordinates, multiplied by a function of x with the same periodicity as the stationary 
solution. We shall write the perturbation in temperature as 

& = a" e i h a z  sin ynx ei(dx+b!A e p t  
hv 

A, V 

Equation (9) then yields the following form for $: 

A set of equations governing the coefficients G,, may then be developed in the 
same manner as that used in the analysis of the steady equations. The growth 
rate p governs the stability of the steady solutions 8 and $: if p has a positive 
real part, the steady flow is unstable; otherwise, it is stable. 

There are two types of disturbances which appear to be most important when 
R is near R,. For a > T )  disturbances a t  right angles to the original rolls are most 
destablizing. For a < n and R smaller than some value, the steady flow becomes 
unstable to a disturbance oriented a t  a small angle with respect to the original 
roll. The expansion procedure discussed above may be used to treat both types 
of instability. However, the second type of instability may be more accurately 
analysed using a method developed by Lortz (1  968) for BBnard convection. Since 
the disturbance growth rate is dependent on the value of the y component of 
the disturbance wave vector, a small quantity in the case of disturbances almost 
aligned with the steady roll, the stability boundary may be described using 
a singular perturbation expansion. This analysis was applied to BBnard con- 
vection by Straus (1975) and will only be outlined here. 
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The equations for steady two-dimensional motion may be written as 

66. VV2Q - V4$ - RV;Q = 0, (13) 

where Q satisfies the boundary conditions $ = P$/az2  = 0 a t  z = 0, I ,  and 
Q = $ ( z , z ) .  Perturbing the solutions of this equation with small disturbances 
4(x, y, z ) ,  we write 

(14) a(vz$)lat + 66.  VVZQ + 6$. vvz$ - v4$ - RV;$ = 0. 

Since we are interested in disturbances which are almost aligned with the rolls 
which are solutions of (13), we write 

6 = f (x , z )e" te img,  

where m is small, and expand 

f = fo+m2fi+ ..., CT = C T ~ + W Z ~ C T ~ +  .... 
Using this formulation in (14), we may derive the following equation for fo: 

a, a,foaxv2$ - a x , ~ o a , v 2 ~  + axa,$axw2f- - a,, $a,vyo - Ra,,fo - vyo = 0. (15) 

A solution with a, = 0 is fo = a,$. Similarly the O(nc") equation is 

- fllV?fo-fOa,v2$ + ~ x ~ , $ ~ x f o - ~ x x ~ ~ , f o - ~ f o - ~ ~ ? f o  

= axa,flaxv24 - axsf1 %VZ4 + a x  a, $axvzfi- ax, $%VZfi- Raxxf l -  Wl. (16) 

This equation has a solution if, and only if, 

- a,, 4 a,fo - Rfo - 2YfOl dx dz, 

where Y is the solution to the problem that is adjoint to (15) : 

a, a,[y a, WI - a , , [~  a, 0 2 ~ 1  - a, WY a, a, $1 
+ a, V ~ Y  a,, $1 - R a,, Y - v 4 ~  = 0. 

A solution to this is Y = a, $. Thus, the solvability condition may be written as 

Since the integral on the left side of (17)  is negative, the flow described by $ is 
unstable if 

Thus, once $ is known, the stability of the flow to a disturbance aligned a t  a 
small angle to that described by $ may be examined. We shall use the expression 
for $ given by ( 7 )  where the coefficients ahv have been determined numerically 
as described in the previous section. One must recognize that this analysis 
assumes that there is no oscillatory instability. This unlikely situation cannot 
be ruled out using this method, but application of the more general stability 
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analysis, discussed below, indicates that all stability boundaries are determined 
by instabilities which set in as monotonically growing disturbances. It is of 
interest to note that a useful stability criterion for R near R, can be derived from 
the relation (18). If we take Q, = ccosaxsinnz, where E is a small but finite 
amplitude, and substitute this into (18)) keeping only terms of lowest order in e, 
we find the criterion for instability: 

R > 2(a2+n2).  

Now, if R = (a2 + 7 ~ ~ ) ~ / a ~ ,  we find that this requires 

The inclusion of higher-order terms modifies this result. The results of this calcula- 
tion are shown in figure 4 as the stability boundary for a < TI where R is less 
than a value determined by the intersection of this stability boundary with that 
due to disturbances at  right angles to the steady rolls. The latter disturbances are 
discussed below. 

The stability of the steady flow with respect to disturbances at larger angles 
can best be treated using the expansions (1 I )  and (12). The series is truncated by 
including only those &,, such that I h I + v < N + 1, where N is the same N as that 
used to truncate the set of steady equations. In  this way, all ahv included in the 
corresponding steady calculation are included in the stability analysis. The 
stability equations are eigenvalue equations forp, and the problem is to determine, 
at given values of R and a, whether it is possible that there is a value of p with 
a positive real part. In  order to answer this question, we have used the same 
technique as was used by Busse (1967) and, subsequently, by Straus (1972). 
Since the matrices involved can be as large as 91 x 91, we have calculated only 
the eigenvalue with the smallest absolute value. This is reasonable since it is 
known that, near R,, there is a region of stable two-dimensional solutions, at  
least for a > 7 ~ .  Thus, at  a given value of R > Re, instability will be indicated by 
the eigenvalue with the largest real part passing through zero from negative to 
positive. An iterative procedure was used to calculate the eigenvalue with the 
smallest absolute value. The iterative method converges only if the eigenvalue 
with the smallest absolute value is real. Since convergence was always attained, 
it is reasonable to conclude that no oscillatory instability is involved. 

Even using this iterative approach, the stability problem is a formidable one. 
Both d and b must be varied a t  each value of R and a analysed. Fortunately, the 
maximum growth rate always occurred when d = 0; thus, some decrease in the 
number of computations required resulted. The value of b which leads to a 
maximum value of p, a t  a given value of R, varies continuously as the value of 
the wavenumber a of the finite amplitude roll solution varies: the quantity 
a2+ b2 remains fairly constant (in comparison with the range of values over 
which a and b vary individually). Figure 3 shows the relevant growth rates for 
R 6 400. In  general, the growth rate is positive outside a band of wavenumbers; 
only within this limited band are the two-dimensional solutions stable. This 
band, which includes only the wavenumber a = 7~ a t  R = R,, increases in width 
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FIGURE 3. The growth rate of the most critical disturbance as 
a function of a at given values of R. 
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FIGURE 4. The region of stable two-dimensional solutions : above dashed line, instability 
of the basic motionless state OCCLWS : only within the closed region are finite amplitude two- 
dimensional solutions stable. 
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to a maximum a t  R N 150. It then decreases until, above a Rayleigh number of 
380 & 5, no two-dimensional rolls are stable. 

Figure 4 shows the stability boundary for both types of disturbances discussed 
here. For low values of R and a < n, disturbances almost aligned with the original 
roll limit the region of stable rolls most strongly. However, for values of R greater 
than about 58 when a < IT, and for all values of R when a > n, disturbances a t  
larger angles predominate. The vanishing of the region of stable rolls for Rayleigh 
numbers larger than 380 t 5 indicates that a three-dimensional flow must exist for 
larger Rayleigh numbers. 

5. Discussion 
The results of the preceding analysis and comparisons with other relevant 

work will be discussed here. The equations of motion describing flow in a porous 
medium are considerably simpler than those describing the flow of a pure fluid. 
The physics describing convective flows in the two situations are, however, the 
same, a t  least in BBnard convection in a large Prandtl number fluid. Thus, the 
problem of convection in a porous medium is one which may be treated with 
comparative ease as a model problem in the study of post-instability flow, The 
present treatment of finite amplitude convection in a porous medium has been 
largely a numerical one. The Galerkin technique has been used to determine the 
properties of steady convection in a porous medium at Rayleigh numbers as 
large as ten times the critical value. The Nusselt number and the horizontally 
averaged temperature field have been described as functions of Rayleigh number 
and horizontal wavenumber. The stability of the steady flow to three-dimensional 
perturbations has been examined using a matrix iterative technique. 

The quantity most often measured in convection experiments is the Nusselt 
number. A comparison of the results of the present analysis with the experimental 
results of Combarnous & LeFur (1969), Buretta (1972), Elder (1967) andschneider 
(1963) shows generally good agreement. There is considerable scatter in the 
experimental points, and the behaviour of the Nusselt number as a function 
of Rayleigh number derived here lies within the range of the experimental 
results. 

Theoretical treatments of convection in porous media have been of several 
types. Elder (1967) used a finite difference method to treat porous-medium 
convection in a square box for values of R < 100. His results are approximately 
2 %  lower than ours a t  R = 100; this is probably because the wavenumber in 
his calculations was determined by the horizontal extent of his model. A square 
box allows only flows of larger wavenumbers than the value 01. N 1.2nr, found to 
maximize the heat flux a t  R = 100 in the present analysis. Since the heat flux 
is maximum when a = 1.2n, a lower value is expected a t  all other wavenumbers. 
Palm et aE. (1972) applied KUO’S (1961) expansion technique to this problem. 
Their results lie somewhat above the results of the present analysis; the reason 
for this is not known, but may lie in the different ordering schemes used in their 
analysis and the present one. In  any case, the difference in the Nusselt numbers 
is no larger than the spread in the experimental results. 
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The problem of convection in a porous medium has also been the subject of 
treatments using the upper-bounding method introduced by Howard (1963) in 
an analysis of BBnard convection. Busse & Joseph (1972) applied the upper- 
bounding technique to porous-medium convection in a fluid with an arbitrary 
value of B.  This approach appears to be too general to yield values of the Nusselt 
number close to those of experiment, as the upper bound on the Nusselt number 
increases with R much too strongly, leading to a behaviour Nu - e R  as R -+ co. 
A more restrictive problem has recently been treated by Gupta & Joseph (1973)) 
who applied the upper-bounding technique in the case B -+ 0. Their results are 
much more realistic: their numerical calculations lead to a Nusselt number lying 
along the upper boundary of the range of experimental results given in figure 2. 
However, their results are still somewhat larger than those given by the present 
calculations. At R = 100, the Nusselt number given by Gupta & Joseph is 
already some 5 % higher than that found here. 

Finally, the stability analysis indicates that, for a given value of R, there 
is a range of horizontal wavenumbers for which stable two-dimensional con- 
vection exists, if R is small enough. For values of R 2 380, there are no stable 
two-dimensional solutions, and three-dimensional motion occurs for all values 
of the wavenumber. This value of R is to be compared with the value 280, a t  
which the experiments of Combarnous & LeFur (1969) indicate that there is 
a change of slope in the dependence of the heat flux on the Rayleigh number. 
This is a phenomenon similar to that observed by Malkus (1954) to occur in 
BBnard convection and later shown by Busse (1967) to be associated with the 
instability of the boundary layers at the top and bottom boundaries of the 
convecting layer. The larger value of R found numerically is to be expected; it 
represents an upper limit on this second critical Rayleigh number because finite 
amplitude instability may limit the region of two-dimensional solutions more 
strongly than does instability due to infinitesimal perturbations. 

It is a pleasure to acknowledge helpful discussions with Professor F. H. Busse. 
This work was supported by U.S. Air Force Space and Missile Systems Organiza- 
tion (SAMSO) Contract FO4701-72-0073. 
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